
Simplex Language Guide 
Version 3.0


October 28, 2021




1. Introduction 
What is Simplex? 
Simplex is the term used for Fracton’s compiler that uses regular double precision variables. 
The simplex language takes a lot more lines to do the same function as the triplex compiler. 
The simplex language offers more control over every aspect of making a model. The math for 
simplex is complete and is very similar to the familiar C language.


What would an equation in Simplex look like? 
Writing an equation for a 3D model in simplex would probably not look familiar to someone 
comfortable with 2D fractals. For example a 3D Mandelbulb looks like:


// Mandelbulb

fx = 0;

fy = 0;

fz = 0;

power = 8;

@beginloop;

r = sqrt(fx * fx + fy * fy + fz * fz);


// atan2(fy,fx)

if (fx > 0) { phi = atan(fy / fx); }

elseif (fx < 0 && fy >= 0) { phi = atan(fy / fx) + pi; }

elseif (fx < 0 && fy < 0) { phi = atan(fy / fx) - pi; }

elseif (fx == 0 && fy >= 0) { phi = pi / 2; }

elseif (fx == 0 && fy < 0) { phi = -pi / 2; }


// arccos(z/r)

if (r > 0) { theta = acos(fz / r); }

else { theta = 0; }


rpower = r^power;

phipower = phi * power;

thetapower = theta * power;


fx = rpower * sin(thetapower) * cos(phipower) + tpx;

fy = rpower * sin(thetapower) * sin(phipower) + tpy;

fz = rpower * cos(thetapower) + tpz;


test = (fx*fx + fy*fy + fz*fz) < 4;


The built in variables (tpx,tpy,tpx) near the end are the point in 3D where the fractal equation is 
calculated.


2. Predefined Variables 



Some variables are pre-defined and are used as an interface between the language and the 
application. The following variables are pre-defined: fx, fy, fz, pi, tpx, tpy, tpz, p1x, p1y, p1z, 
through p6x, p6y, p6z, maxit, n, test.


fx, fy, fz: 
fx, fy, fz are the main triplex variables and are usually iterated. For a Julia type expression, fx, 
fy, fz are initialized to the value tpx, tpy, tpz respectively. For a Mandelbrot type expression, fx, 
fy, fz are initialized to zero. The magnitude of fx, fy, fz is tested to see if it is larger than bailout. 
If so, the iteration is stopped and f is declared to have escaped. The number of iterations 
required before fx, fy, fz escapes is used to determine the outer surface of the 3D fractal. The 
value of fx, fy, fz after the last iteration is returned to Fracton but is not used at this time.


pi: 
pi is the constant (3.14…,0,0).


e: 
e is the constant (2.718…,0,0).


tpx, tpy, tpz: 
tpx, tpy, tpz is the point in 3D fractal space where the formula will be evaluated. The formula 
should make no assumption about the limits of tpx, tpy, tpz. The value may be in any direction 
and may not be visible on any view.


p1x, p1y, p1z, through p6x, p6y, p6z: 
p1x, p1y, p1z, through p6x, p6y, p6z are values supplied to the formula from the settings view. 
The values are related to tpx, tpy, tpz and can be used to offset, rotate, and scale tpx, tpy, tpz 
without any other arithmetic. p1x, p1y, p1z, through p6x, p6y, p6z are also used for animation.


p1x, p1y, p1z, through p6x, p6y, p6z = scale(rotate(tpx, tpy, tpz - position))


maxit: 
maxit is the maximum number of iterations from the settings view.


n: 
n is the iteration number of the loop. n is zero based so the first time through the loop n = 0.


test: 
test is the escape test result for the fractal. If test is false, the fractal is declared escaped and 
the loop stops. If test is true the loop continues as long as the maximum number of iterations 
has not been exceeded. Calculate the magnitude squared of fx, fy, fz to determine the value of 
test. The value of test is returned to Fracton after each iteration.




Example: test = (fx*fx + fy*fy + fz*fz) < 4;


3. User Defined Variables 
To add a user defined variable, simply use it in an equation. You should set its value before you 
read its value.


4. Initialization of Variables 
Statements before the @beginloop; compiler directive are only executed on the first iteration of 
the loop.


Example:

fx =0; // Initializes fx to 0

@beginloop; // Start of the loop


5. Constants 
Constants are double precision. Exponents are IEEE compliant.


Example:


a = -3.14e-10;

b = 4E10;

c = 3;


6. Command Summary 
Arithmetic: + - * / ^ %


Assignment: =


Comment: // /* */


Compare: < > <= >= == != && ||


Conditional Expression: ?:


Non-Trigonometric Functions: abs ceil floor mag magsqr pow sqrt


Trigonometric Functions: acos acosh asin asinh atan atan2 atanh cos cosh exp log log10 sin 
sinh tan tanh


Removed: flip imag real conj cosxx


7. Arithmetic 



In all of the descriptions below a and b are double precision numbers.


+ 
Adds two triplex numbers a and b and returns a triplex number.

a + b


Example: c = a + b;


- 
Subtracts two numbers a and b and returns a number.


a - b


Example: c = a - b;


Unary minus negates a variable or parenthesized expression.


Example: b = -a; b = -(a * 2);


* 
Multiplies two numbers a and b and returns a number.


a * b


Example: c = a * b;


/ 
Divides two numbers a and b and returns a number.


a / b


Example: c = a / b;


^


Raises the number a to the power of b and returns a number. The operator ^ is right 
associative so a ^ b ^ c = a ^ (b ^ c). The c language uses pow(a , b) instead of the ^ operator.


a ^ b


Example: c = a ^ b;


%


Performs the scalar modulus operation on a number. Returns 0 for b <= 0.




a % b

if (b > 0) c = a % b

else c = 0


Example c = a % b;


8. Assignment 
=


The equal copies the value of an expression to a variable. Every expression must start with a 
variable followed by  = .


a = b


Example: a = b;


9. Comment 
// 
Any time // is encountered the rest of the line is ignored by the compiler.


Examples:


// This line is a comment

a = b + c; // Everything to the right of // is a comment


/* 
The start of a block comment.


*/ 
The end of a block comment.


Example:


/* All of these three lines

a = b * c;

are comments */


10. Compare 
< 
a < b returns 1 if a is less than b. Otherwise, it returns a 0.




Example c = a < b;


> 
a > b returns 1 if a is greater than than b. Otherwise, it returns a 0.


Example c = a > b;


<= 
a <= b returns 1 if a is less than or equal to b. Otherwise, it returns a 0.


Example c = a <= b;


>= 
a >= b returns 1 if a is greater than or equal to b. Otherwise, it returns a 0.


Example c = a >= b;


== 
a == b returns 1 if a is equal to b. Otherwise, it returns a 0.


Example c = a == b;


!= 
a != b returns 1 if a is not equal to b. Otherwise, it returns a 0.


Example c = a != b;


&& 
a && b returns 1 if both a and b are greater than 0. Otherwise, it returns a 0.


Example c = a > 1 && a < 0;


|| 
a || b returns 1 if either a or b are greater than 0. Otherwise, it returns a 0.


Example c = a > 1 || a < 0;


11. Conditional Expression: 
?: 



The conditional expression  a ? b : c returns b if a > 0 otherwise it returns c. This differs from 
the C language in that all of the expressions are evaluated whether they are used or not.


Example: f = f >= 0 ? (f - 1) : (f + 1);


12. Non-Trigonometric Functions 
abs 
Returns the absolute value of a number. For the modulus of the x component only see % in the 
arithmetic section.


abs( a )


Example: b = abs( a );


ceil 
Returns the ceiling of a number.


ceil(a)


Example: b = ceil( a );


floor 
Returns the floor of a number.


floor(a)


Example: b = floor( a );


mag 
Returns the argument unchanged. This function is included for completeness.


mag(a)


Example: b = mag( a );


magsqr 
Returns the square of a number. This function is included for completeness.


magsqr(a)

b = a * a


Example: b = magsqr( a );




pow 
Raises the number a to the power of b and returns a number. This is the same as the ^ 
operation above.


pow(a , b)

// See ^


Example: c = pow(a , b);


round 
Returns the round of the individual components of a triplex number.


round(a)

b.x = round( a.x )

b.y = round( a.y )

b.z = round( a.z )


Example: b = round( a );

trunc 
Returns the trunc of a number.


trunc(a)


Example: b = trunc( a );


sqrt 
Returns the square root of a number.


sqrt(a)


Example b = sqrt( a );


13. Trigonometric Functions 
Trigonometric functions work with double precision numbers. The trigonometric functions are: 
acos acosh asin asinh atan atan2 atanh cos cosh exp log log10 sin sinh tan tanh.


14. Precedence: 
( )


Changes the precedence of an expresssion. 


Example: a = 2 * (1 + 3);  // a is 8




15. Control Flow 
if, if else, and else are used to allow logical control of program execution.


if 
The if operator must be followed by an expression and one or more statements enclosed by 
brackets. If the expression is not equal to zero the expression is true and the statements are 
executed. Unlike C, the brackets are required around statements.


if(expression) {one or more statements}


else if 
The else if operator is executed only if the previous if or else if operators were false. The else if 
operator must be followed by an expression and one or more statements enclosed by 
brackets. If the expression is not equal to zero the expression is true and the statements are 
executed.


else if(expression) {one or more statements}


else 
The else operator is executed only if the previous if or else if operators were false. The else  
operator must be followed by one or more statements enclosed by brackets.


else {one or more statements}


Example

if( a < 5) {

a = 0;

b = b + 1;

}

else if( a > 10){

a = 0;

}

else {

a = 10;

b = 0;

}



	Introduction
	Predefined Variables
	User Defined Variables
	Initialization of Variables
	Constants
	Command Summary
	Arithmetic
	Assignment
	Comment
	Compare
	Conditional Expression:
	Non-Trigonometric Functions
	Trigonometric Functions
	Precedence:
	Control Flow

